
4/17/23

1

Stephen P. Carl - CSci 257 1

Recursion in Java

Stephen P. Carl – CSci 257 1

Recursion Defined
Recursion is a technique for defining data structures or
algorithms in terms of themselves. A recursive
algorithm is a form of decomposition where rather than
choosing an arbitrary subtask of the problem to do,
choose a simpler problem that has the same form as
the original (self-similarity). A recursive definition has
two parts:

–  the base case - a stopping condition
–  the recursive step - an expression of the computation or

definition in terms of itself

There may be one or more of each of these.

4/17/23

2

Stephen P. Carl – CSci 257 1

Example of a Recursive Definition

•  There are many recursive definitions in mathematics.
Consider the factorial function:

n! = n * (n-1) * (n -2) * … * 2 * 1

•  The same function can be defined recursively by
giving a base case and a recursive step:

0! = 1 (by definition)
n! = n * (n - 1)! (the recursive step)

Stephen P. Carl – CSci 257 1

Recursive Functions

A recursive function is a function which calls itself somewhere in
the function body. Recursive functions are supported in most
modern programming.

A language that supports recursion usually requires a system stack
for tracking function call and return.

In a recursive function, execution must “drive” computation to a
base case so the recursion will stop. The recursive step is
intended to ensure that the computation eventually terminates.

4/17/23

3

Stephen P. Carl – CSci 257 1

The Factorial Function in Java
The recursive definition for factorial can be written in a very
straightforward manner. Take some time to convince yourself that
this method works:

// precondition: n >= 0
public static int fact(int n)
{
 Assert.pre(n >= 0);
 if (n < 2) // base case
 return 1;
 else // recursive step (call in bold)
 return (n * fact(n - 1));
}

Stephen P. Carl – CSci 257 1

Tracing a Recursive Function

The behavior of fact when n = 5:

fact(5) -> 5 * fact(4)
fact(4) -> 4 * fact(3)
fact(3) -> 3 * fact(2)
fact(2) -> 2 * fact(1)
fact(1) -> 1

We can view this as a process of driving the
computation to the base case; next, we unwind.

4/17/23

4

Stephen P. Carl – CSci 257 1

Tracing a Recursive Function

Eventually, the call fact(1) returns 1 to the function
which called it, so that it can complete its calculation
and return its result to the function which called it, and
so on. This is called back-substitution, or unwinding the
recursion.

 fact(1) -> 1
 fact(2) -> 2 * 1 = 2
 fact(3) -> 3 * 2 = 6
 fact(4) -> 4 * 6 = 24
 fact(5) -> 5 * 24 = 120 <<< the final answer

Stephen P. Carl – CSci 257 1

Recursion Under the Hood
The execution environment sets up a call stack (or system stack)
to store activation records for keeping track of function call and
return. Therefore, each recursive call is represented by an
activation record on the stack. The activation record at the top
of the stack is active, and all other calls on the stack are said
to be suspended. Each recursive-step call waits for the results of
the next call so it can finish its own computation.

In geeneral, recursion works by taking advantage of the
system stack to keep track of the partial results computed by the
successive recursive calls; these partial results are then back-
substituted into the preceding calls through the normal operation
of return values.

4/17/23

5

Stephen P. Carl – CSci 257 1

Another Mathematical Example
An important function in probability is the binomial
coefficient, or choose, function, written C(n,k), and
defined as:

 C(n,k) = n! / [k!(n - k)!]

This is hard to compute because n! gets too large to
represent as an integer even for small values of n.
Another version is recursive (note: two base cases):

 C(n, 0) = 1, for n > 0
 C(n, n) = 1, for n > 0
 C(n, k) = C(n-1, k) + C(n-1, k-1), for n > k >= 0

Stephen P. Carl – CSci 257 1

The choose function in Java
Here is a straightforward translation of the recursive
definition into Java:

// pre: n > 0 && n > k >= 0

public static int choose(int n, int k)
{
 if (k == 0) // first base case
 return 1;
 else if (n == k) // second base case
 return 1;
 else // recursive step
 return choose(n-1, k) + choose(n-1, k-1);
}

4/17/23

6

Stephen P. Carl – CSci 257 1

Recursion Trees

A trace is one method of analyzing what a recursive function is
doing. Another is to draw a recursion tree. In this method, we
show each invocation of the function as a tree node and draw lines
between each function invocation and the recursive calls it makes.

The recursion tree can be annotated to show arguments to each
function and the values they compute and return. The tree for
fact gives us no new information, but drawing such a tree for
the choose function is quite useful.

Stephen P. Carl – CSci 257 1

Recursion tree for choose()
We derive the recursion tree for choose(4, 2);

4/17/23

7

Stephen P. Carl – CSci 257 1

Another example
// pre: data[] is sorted
// post: returns index if target in data, -1 otherwise
public static int binarySearch(int[] data, int first,

 int last, int target)
{
 if (first > last) // base case #1

 return -1;

 int mid = (first+last)/2;

 if (data[mid] == target) // base case #2
 return mid;
 else if (data[mid] > target) // rec step #1
 return binarySearch(data, first, mid-1, target);
 else
 return binarySearch(data, mid+1, last, target);
}

Stephen P. Carl – CSci 257 1

Types of Recursion
Each of these simple examples illustrates a different
kind of recursion:

– The factorial and binarySearch methods are
examples of linear recursion, in which only one
recursive call is made per recursive step.

– The choose method is an example of tree
recursion, in which two (or more, in general)
recursive calls are made in at least one recursive
step.

The recursion tree for choose exposes an inefficiency:
some recursive calls do redundant work (though this is
not always true for tree-recursive algorithms).

4/17/23

8

Stephen P. Carl – CSci 257 1

Recursion vs. Iteration
For these simple examples, it is easy to come up with an iterative
version of the same algorithm that will run faster. In fact recursion
and iteration are related; languages without iteration simulate it
using recursion, and vice versa.

However, more interesting examples, such as the sorting routines
we discuss later, do not have an obvious iterative solution. When a
solution is discovered, it is often much longer than the recursive
version.

The same is true for algorithms based on recursively-defined data
structures, such as the Binary Tree ADT.

Stephen P. Carl – CSci 257 1

Efficiency of Recursive Algorithms
The efficiency of a recursive algorithm is not obvious
and depends on the type and number of recursive calls
performed. Methods used to determine efficiency
include:

–  estimating number of operations done by counting the

number of recursive calls from the trace or recursion tree
and multiplying by the number of operations per call.

–  mathematically by using recurrence relations to model the
performance of the function for any given input (usually
studied in a discrete mathematics class).

–  Some functions require even more sophisticated
mathematical tools to analyze.

4/17/23

9

Stephen P. Carl – CSci 257 1

Space Complexity
Space complexity is a characterization of how much memory an
algorithm requires as a function of input size. We can generally
give an upper bound on the amount of memory any particular
function will use.

Many algorithms use a constant amount of space; for example,
most sorting algorithms manipulate the values of an array in place,
so the total amount of space used does not change during
execution.

Recursive methods save their state on the system stack, which is a
bounded resource, so we must consider space complexity for
these types of algorithms.

Stephen P. Carl – CSci 257 1

Examples of Space Complexity
•  The fact method as written makes n total calls to perform fact(n),

therefore, at most n activation records will be pushed on the
stack.

•  The binarySearch method makes a number of calls equal to or

less than the log (base 2) of the size of the input array, so no
more than log2(data.length) activation records will be
pushed. In this case we may be able to do even better.

•  To figure space complexity of the choose method, notice from

the recursion tree that any path is made up of at most n calls
(including the first). This means that at most n activation
records will be on the stack at any given time during execution.

4/17/23

10

Stephen P. Carl – CSci 257 1

Space Complexity: Conclusions

The space used by the recursive functions fact and
choose (in terms of activation records on the stack) is
proportional to the argument n, so we say that these
functions have linear space complexity.

The space used by the recursive function
binarySearch is proportional to the logarithm of the
array size, so it has logarithmic space complexity
expressed in terms of the number of array elements.

Stephen P. Carl – CSci 257 1

Tail Recursion

Tail recursion is defined as a recursive function that returns
immediately after its recursive step - it does no computation with a
result from a previous call.

In fact and choose, results of one recursive call are returned to the
calling function and used in a calculation; such functions are not
tail-recursive.

By contrast, binarySearch returns the value produced by the base
case call, so there are no partial results to compute, and all
back-substitutions are unnecessary. This is a tail-recursive
function.

4/17/23

11

Stephen P. Carl – CSci 257 1

Tail Call Optimization
The programmer or the compiler may make use of the tail-recursion
property. If a function is tail recursive, it can be easily turned into
an iterative function by the coder. However, some compilers
automatically recognize this case and optimize the code for us.

This amounts to reducing the space required to a constant
amount by reusing the original call’s activation record. The
compiler can do this because a tail recursive function call saves no
partial results in the record.

Stephen P. Carl – CSci 257 1

Summary

•  Many mathematical definitions and data structures
are naturally recursive, as are many patterns
observed in nature.

•  Recursion can be expressed using recursive
methods which have at least one base case along
with at least one recursive call.

•  Simple recursive methods may be slower and use
more memory than equivalent iterative versions.
However, we will see examples for which the
recursive version is shorter, faster, and easier to
understand.

