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Recursion in Java 
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Recursion Defined 
Recursion is a technique for defining data structures or  
algorithms in terms of themselves.  A recursive  
algorithm is a form of decomposition where rather than  
choosing an arbitrary subtask of the problem to do,  
choose a simpler problem that has the same form as  
the original (self-similarity).  A recursive definition has 
two parts: 

–  the base case - a stopping condition 
–  the recursive step - an expression of the computation or 

definition in terms of itself 

There may be one or more of each of these. 
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Example of a Recursive Definition 

•  There are many recursive definitions in mathematics.  
Consider the factorial function: 
 
n! = n * (n-1) * (n -2) * … * 2 * 1 
 

•  The same function can be defined recursively by 
giving a base case and a recursive step: 
 
0! = 1  (by definition) 
n! = n * (n - 1)!  (the recursive step) 
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Recursive Functions 

A recursive function is a function which calls itself somewhere in  
the function body.  Recursive functions are supported in most  
modern programming. 
 
A language that supports recursion usually requires a system stack  
for tracking function call and return. 
 
In a recursive function, execution must “drive” computation to a  
base case so the recursion will stop.  The recursive step is 
intended to ensure that the computation eventually terminates. 
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The Factorial Function in Java 
The recursive definition for factorial can be written in a very 
straightforward manner. Take some time to convince yourself that 
this method works: 
 
// precondition: n >= 0 
public static int fact(int n) 
{ 
   Assert.pre(n >= 0); 
   if (n < 2)      // base case 
     return 1; 
   else             // recursive step (call in bold) 
     return (n * fact(n - 1)); 
} 
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Tracing a Recursive Function 

The behavior of fact when n = 5: 
 
fact(5) -> 5 * fact(4) 
fact(4) -> 4 * fact(3) 
fact(3) -> 3 * fact(2) 
fact(2) -> 2 * fact(1) 
fact(1) -> 1 
 

We can view this as a process of driving the  
computation to the base case; next, we unwind. 



4/17/23 

4 

Stephen P. Carl – CSci 257 1 

Tracing a Recursive Function 

Eventually, the call fact(1) returns 1 to the function 
which called it, so that it can complete its calculation 
and return its result to the function which called it, and 
so on.  This is called back-substitution, or unwinding the 
recursion. 
 
   fact(1) -> 1 
   fact(2) -> 2 * 1 = 2 
   fact(3) -> 3 * 2 = 6 
   fact(4) -> 4 * 6 = 24 
   fact(5) -> 5 * 24 = 120 <<< the final answer 
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Recursion Under the Hood 
The execution environment sets up a call stack (or system stack)  
to store activation records for keeping track of function call and  
return.  Therefore, each recursive call is represented by an  
activation record on the stack. The activation record at the top 
of the stack is active, and all other calls on the stack are said 
to be suspended.  Each recursive-step call waits for the results of  
the next call so it can finish its own computation. 
 
In geeneral, recursion works by taking advantage of the  
system stack to keep track of the partial results computed by the  
successive recursive calls;  these partial results are then back- 
substituted into the preceding calls through the normal operation  
of return values. 
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Another Mathematical Example 
An important function in probability is the binomial 
coefficient, or choose, function, written C(n,k), and 
defined as: 
 

 C(n,k) = n! / [k!(n - k)!] 
 
This is hard to compute because n! gets too large to 
represent as an integer even for small values of n.  
Another version is recursive (note: two base cases): 
 
    C(n, 0) = 1,    for n > 0 
    C(n, n) = 1,    for n > 0 
    C(n, k) = C(n-1, k) + C(n-1, k-1),    for n > k >= 0 
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The choose function in Java 
Here is a straightforward translation of the recursive 
definition into Java: 
 
// pre: n > 0 && n > k >= 0 

public static int choose(int n, int k) 
{ 
   if (k == 0)       // first base case 
      return 1; 
   else if (n == k)  // second base case 
      return 1; 
   else              // recursive step 
      return choose(n-1, k) + choose(n-1, k-1); 
} 
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Recursion Trees 

A trace is one method of analyzing what a recursive function is 
doing.  Another is to draw a recursion tree.  In this method, we  
show each invocation of the function as a tree node and draw lines  
between each function invocation and the recursive calls it makes. 
 
The recursion tree can be annotated to show arguments to each  
function and the values they compute and return.   The tree for  
fact gives us no new information, but drawing such a tree for  
the choose function is quite useful. 
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Recursion tree for choose() 
We derive the recursion tree for choose(4, 2); 
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Another example 
// pre: data[] is sorted 
// post: returns index if target in data, -1 otherwise  
public static int binarySearch(int[] data, int first,  

     int last, int target) 
{ 
  if (first > last) // base case #1 

  return -1; 
 
  int mid = (first+last)/2; 
  
  if (data[mid] == target)  // base case #2 
    return mid; 
  else if (data[mid] > target) // rec step #1 
    return binarySearch(data, first, mid-1, target); 
  else  
   return binarySearch(data, mid+1, last, target); 
} 
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Types of Recursion 
Each of these simple examples illustrates a different 
kind of recursion: 

– The factorial and binarySearch methods are 
examples of linear recursion, in which only one 
recursive call is made per recursive step.   

– The choose method is an example of tree 
recursion, in which two (or more, in general) 
recursive calls are made in at least one recursive 
step. 
 

The recursion tree for choose exposes an inefficiency: 
some recursive calls do redundant work (though this is 
not always true for tree-recursive algorithms). 
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Recursion vs. Iteration 
For these simple examples, it is easy to come up with an iterative  
version of the same algorithm that will run faster.  In fact recursion  
and iteration are related;  languages without iteration simulate it  
using recursion, and vice versa. 
 
However, more interesting examples, such as the sorting routines  
we discuss later, do not have an obvious iterative solution.  When a 
solution is discovered, it is often much longer than the recursive 
version. 
 
The same is true for algorithms based on recursively-defined data 
structures, such as the Binary Tree ADT. 
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Efficiency of Recursive Algorithms 
The efficiency of a recursive algorithm is not obvious 
and depends on the type and number of recursive calls 
performed.  Methods used to determine efficiency 
include: 

 
–  estimating number of operations done by counting the 

number of recursive calls from the trace or recursion tree 
and multiplying by the number of operations per call.   

–  mathematically by using recurrence relations to model the 
performance of the function for any given input (usually 
studied in a discrete mathematics class).   

–  Some functions require even more sophisticated 
mathematical tools to analyze. 
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Space Complexity 
Space complexity is a characterization of how much memory an 
algorithm requires as a function of input size.  We can generally 
give an upper bound on the amount of memory any particular 
function will use.  
 
Many algorithms use a constant amount of space;  for example, 
most sorting algorithms manipulate the values of an array in place, 
so the total amount of space used does not change during 
execution. 
 
Recursive methods save their state on the system stack, which is a 
bounded resource, so we must consider space complexity for 
these types of algorithms. 
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Examples of Space Complexity 
•  The fact method as written makes n total calls to perform fact(n), 

therefore, at most n activation records will be pushed on the 
stack. 

 
•  The binarySearch method makes a number of calls equal to or 

less than the log (base 2) of the size of the input array, so no 
more than log2(data.length) activation records will be 
pushed.  In this case we may be able to do even better. 

 
•  To figure space complexity of the choose method, notice from 

the recursion tree that any path is made up of at most n calls 
(including the first).  This means that at most n activation 
records will be on the stack at any given time during execution.   
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Space Complexity: Conclusions 

The space used by the recursive functions fact and 
choose (in terms of activation records on the stack) is 
proportional to the argument n, so we say that these 
functions have linear space complexity. 
 
The space used by the recursive function  
binarySearch is proportional to the logarithm of the 
array size, so it has logarithmic space complexity  
expressed in terms of the number of array elements.  
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Tail Recursion 

Tail recursion is defined as a recursive function that returns  
immediately after its recursive step - it does no computation with a  
result from a previous call.  
 
In fact and choose, results of one recursive call are returned to the  
calling function and used in a calculation;  such functions are not  
tail-recursive. 
 
By contrast, binarySearch returns the value produced by the base  
case call, so there are no partial results to compute, and all 
back-substitutions are unnecessary. This is a tail-recursive  
function. 
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Tail Call Optimization 
The programmer or the compiler may make use of the tail-recursion  
property.  If a function is tail recursive, it can be easily turned into  
an iterative function by the coder.  However, some compilers  
automatically recognize this case and optimize the code for us. 
 
This amounts to reducing the space required to a constant  
amount by reusing the original call’s activation record.   The  
compiler can do this because a tail recursive function call saves no  
partial results in the record. 
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Summary 

•  Many mathematical definitions and data structures 
are naturally recursive, as are many patterns 
observed in nature. 

•  Recursion can be expressed using recursive 
methods which have at least one base case along 
with at least one recursive call. 

•  Simple recursive methods may be slower and use 
more memory than equivalent iterative versions.  
However, we will see examples for which the 
recursive version is shorter, faster, and easier to 
understand. 

 


